Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Glob Chang Biol ; 30(4): e17279, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619007

There are close links between solar UV radiation, climate change, and plastic pollution. UV-driven weathering is a key process leading to the degradation of plastics in the environment but also the formation of potentially harmful plastic fragments such as micro- and nanoplastic particles. Estimates of the environmental persistence of plastic pollution, and the formation of fragments, will need to take in account plastic dispersal around the globe, as well as projected UV radiation levels and climate change factors.


Solar Energy , Ultraviolet Rays , Ultraviolet Rays/adverse effects , Climate Change , Environmental Pollution , Weather
2.
Photochem Photobiol Sci ; 23(4): 629-650, 2024 Apr.
Article En | MEDLINE | ID: mdl-38512633

This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.


Plastics , Water Pollutants, Chemical , Humans , Plastics/toxicity , Ecosystem , Ultraviolet Rays , Climate Change , Water Pollutants, Chemical/analysis
3.
Environ Sci Technol ; 50(13): 6621-31, 2016 07 05.
Article En | MEDLINE | ID: mdl-27110903

Local climates in the Northern and Southern Hemisphere are influenced by Arctic Amplification and by interactions of the Antarctic ozone hole with climate change, respectively. Polar changes may affect hydroclimatic conditions in temperate regions, for example, by increasing the length and intensity of precipitation events at Northern Hemisphere midlatitudes. Additionally, global warming has led to the thawing of ancient permafrost soils, particularly in Arctic regions, due to Arctic Amplification. Both heavy precipitation events and thawing of permafrost are increasing the net transfer of terrestrially derived dissolved organic matter (DOM) from land to surface waters. In aquatic ecosystems, UV-induced oxidation of terrigenous DOM (tDOM) produces atmospheric CO2 and this process is one of several mechanisms by which natural organic matter in aquatic and soil environments may play an important role in climate feedbacks. The Arctic is particularly affected by these processes: for example, melting of Arctic sea ice allows solar UV radiation to penetrate into the ice-free Arctic Ocean and to cause photochemical reactions that result in bleaching and mineralization of tDOM. Open questions, in addition to those shown in the Graphical Abstract, remain regarding the resulting contributions of tDOM photomineralization to CO2 production and global warming.


Climate Change , Ecosystem , Arctic Regions , Climate , Permafrost
4.
Photochem Photobiol Sci ; 14(1): 127-48, 2015 Jan.
Article En | MEDLINE | ID: mdl-25380348

Climate change modulates the effects of solar UV radiation on biogeochemical cycles in terrestrial and aquatic ecosystems, particularly for carbon cycling, resulting in UV-mediated positive or negative feedbacks on climate. Possible positive feedbacks discussed in this assessment include: (i) enhanced UV-induced mineralisation of above ground litter due to aridification; (ii) enhanced UV-induced mineralisation of photoreactive dissolved organic matter (DOM) in aquatic ecosystems due to changes in continental runoff and ice melting; (iii) reduced efficiency of the biological pump due to UV-induced bleaching of coloured dissolved organic matter (CDOM) in stratified aquatic ecosystems, where CDOM protects phytoplankton from the damaging solar UV-B radiation. Mineralisation of organic matter results in the production and release of CO2, whereas the biological pump is the main biological process for CO2 removal by aquatic ecosystems. This paper also assesses the interactive effects of solar UV radiation and climate change on the biogeochemical cycling of aerosols and trace gases other than CO2, as well as of chemical and biological contaminants. Interacting effects of solar UV radiation and climate change on biogeochemical cycles are particularly pronounced at terrestrial-aquatic interfaces.

5.
Photochem Photobiol Sci ; 11(1): 13-27, 2012 Jan.
Article En | MEDLINE | ID: mdl-22279621

The parties to the Montreal Protocol are informed by three panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with two focal issues. The first focus is the effects of increased UV radiation on human health, animals, plants, biogeochemistry, air quality, and materials. The second focus is on interactions between UV radiation and global climate change and how these may affect humans and the environment. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than believed previously. As a result of this, human health and environmental problems will be longer-lasting and more regionally variable. Like the other panels, the EEAP produces a detailed report every four years; the most recent was published in 2010 (Photochem. Photobiol. Sci., 2011, 10, 173-300). In the years in between, the EEAP produces less detailed and shorter progress reports, which highlight and assess the significance of developments in key areas of importance to the parties. The next full quadrennial report will be published in 2014-2015.


Climate Change , Ozone/analysis , Animals , Humans , Ultraviolet Rays
6.
Photochem Photobiol Sci ; 9(3): 275-94, 2010 Mar.
Article En | MEDLINE | ID: mdl-20301813

The parties to the Montreal Protocol are informed by three panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with UV radiation and its effects on human health, animals, plants, biogeochemistry, air quality and materials. Since 2000, the analyses and interpretation of these effects have included interactions between UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than believed previously. As a result of this, human health and environmental problems will likely be longer-lasting and more regionally variable. Like the other panels, the EEAP produces a detailed report every four years; the most recent was that for 2006 (Photochem. Photobiol. Sci., 2007, 6, 201-332). In the years in between, the EEAP produces a less detailed and shorter progress report, as is the case for this present one for 2009. A full quadrennial report will follow for 2010.


Climate Change , Environment , Ozone/analysis , Program Development , Air/analysis , Animals , Ecosystem , Humans , Ultraviolet Rays/adverse effects
7.
Environ Sci Technol ; 43(6): 1864-70, 2009 Mar 15.
Article En | MEDLINE | ID: mdl-19368184

This study investigated the kinetics of the photoreductive dissolution of various iron(III)(hydr)oxide phases, lepidocrocite (gamma-FeOOH), ferrihydrite, and hydrous ferric oxide, in the absence of organic ligands as a function of pH in deaerated and aerated suspensions. Photoreductive dissolution of lepidocrocite and ferrihydrite only occurred below pH 6. Under oxic conditions, we observed both the formation of aqueous Fe(II) and H2O2 during photoreductive dissolution of lepidocrocite and ferrihydrite at pH 3. These experimental findings are consistent with the light-induced reduction of surface Fe(III) at the (hydr)oxide surface and the concomitant oxidation of surface-coordinated water or hydroxyl groups, leading to surface Fe(II) and *OH radicals and subsequently to H2O2. The formation of *OH radicals atthe surface was confirmed by photodissolution experiments conducted in the presence of *OH radical scavengers. Kinetic modeling of the experimental data suggests that the relevant pathway for the formation of H2O2 is the reoxidation of surface lattice Fe(II) by molecular oxygen. This study furthermore shows that in the presence of strong iron binding ligands such as siderophores, specifically desferrioxamine B, the photoreductive dissolution of lepidocrocite, ferrihydrite, and to a lesser extent hydrous ferric oxide may also proceed at seawater pH.


Ferric Compounds/chemistry , Ligands , Models, Chemical , Organic Chemicals/chemistry , Kinetics , Light , Oxidation-Reduction , Water/chemistry
8.
Environ Sci Technol ; 43(6): 1871-6, 2009 Mar 15.
Article En | MEDLINE | ID: mdl-19368185

Photoreductive dissolution of lepidocrocite (gamma-FeOOH) in the presence/absence of the siderophore desferrioxamine B (DFOB) was investigated at different wavelengths. At pH 3 in the absence of DFOB, Fe(II) formation rates normalized to the photon flux increased with decreasing wavelengths below 515 nm, consistent with enhanced Fe(II) formation at lower wavelengths by photolysis of surface Fe(III)-hydroxo groups or by surface scavenging of photoelectrons generated in the semiconducting bulk. In the presence of DFOB at pH 3, photoreductive dissolution rates, normalized to the photon flux, increased more strongly with decreasing wavelengths below 440 nm. We hypothesize that acid-catalyzed hydrolysis of DFOB generates degradation products that form photoreactive surface complexes leading to an increase in photodissolution rates at low pH. At pH 8 in the presence of DFOB, normalized photodissolution rates had a maximum in the spectral window 395-435 nm and were significantly smaller at lower wavelengths, suggesting that adsorbed DFOB is directly involved in the reduction of surface Fe(III) by a light-induced ligand-to-metal charge-transfer reaction within the surface Fe(III)-DFOB complex. The strong response in the visible light suggests that photoreductive dissolution of iron (hydr)oxides promoted by siderophores with hydroxamic acid groups may occur deep into in the euphotic zone of oceans.


Deferoxamine/chemistry , Ferric Compounds/chemistry , Siderophores/chemistry , Ligands , Light , Oxidation-Reduction , Water/chemistry
9.
Photochem Photobiol Sci ; 8(1): 13-22, 2009 Jan.
Article En | MEDLINE | ID: mdl-19256109

After the enthusiastic celebration of the 20th Anniversary of the Montreal Protocol on Substances that Deplete the Ozone Layer in 2007, the work for the protection of the ozone layer continues. The Environmental Effects Assessment Panel is one of the three expert panels within the Montreal Protocol. This EEAP deals with the increase of the UV irradiance on the Earth's surface and its effects on human health, animals, plants, biogeochemistry, air quality and materials. For the past few years, interactions of ozone depletion with climate change have also been considered. It has become clear that the environmental problems will be long-lasting. In spite of the fact that the worldwide production of ozone depleting chemicals has already been reduced by 95%, the environmental disturbances are expected to persist for about the next half a century, even if the protective work is actively continued, and completed. The latest full report was published in Photochem. Photobiol. Sci., 2007, 6, 201-332, and the last progress report in Photochem. Photobiol. Sci., 2008, 7, 15-27. The next full report on environmental effects is scheduled for the year 2010. The present progress report 2008 is one of the short interim reports, appearing annually.


Climate , Conservation of Natural Resources , Ozone/chemistry , Aerosols , Animals , Humans , Sunlight
11.
Environ Sci Technol ; 38(6): 1843-8, 2004 Mar 15.
Article En | MEDLINE | ID: mdl-15074698

Cu(II) is a key species with respect to the bioavailability and hence toxicity of copper. Therefore, it is important to elucidate the factors that control Cu(I) steady-state concentrations in natural waters. In this study, a solid-phase-extraction-based method was developed that allows Cu(I) measurements at ambient concentrations. Cu(I) is selectively enriched as a bathocuproine complex on a hydrophobic polymer column, whereas Cu(II), bound to ethylenediamine, is not retained on the column. After elution with acidic methanol, Cu is analyzed with graphite-furnace atomic absorption spectroscopy. The detection limit of the whole analytical procedure is below 1 x 10(-9) M, and the mean recovery of Cu(I) is approximately 70%. We then applied this method to determine Cu(I) in water samples collected from the River Scheldt estuary and the North Sea. Upon irradiation of these filtered water samples in the laboratory (with approximately 5 kW m(-2)), Cu(I) steady-state concentrations ([Cu(I)]ss) were established within a few minutes, and [Cu(I)]ss ranged from 5% to 80% of total dissolved copper, depending on the origin of the water samples. Measured [Cu(I)]ss can be interpreted by considering light-induced reduction of Cu(II) and stabilization of Cu(I) by chloride at high salinity, thermal reduction of Cu(II) by sulfide-containing compounds at low salinity, and fast reoxidation of Cu(I) due to stabilization of Cu(II) by strong organic ligands present at intermediate salinity.


Copper/analysis , Water Pollutants/analysis , Biological Availability , Copper/chemistry , Ligands , Oxidation-Reduction , Photochemistry , Seawater/chemistry , Sodium Chloride , Solubility , Spectrophotometry, Atomic
12.
Environ Sci Technol ; 37(19): 4403-9, 2003 Oct 01.
Article En | MEDLINE | ID: mdl-14572092

The photochemical reduction of Cr(VI) by iron and aquatic dissolved organic matter (DOM) was investigated. DOM sampled from a number of surface waters (a eutrophic wetland, a blackwater stream, and river water from a mix-use watershed) was used in this study. Moreover, a fulvic acid from Lake Fryxell, Antarctica, was also used to represent a DOM derived from a strictly autochthonous source. Cr(VI) reduction to Cr(III) at pH 5.5 was observed for all target DOMs used in this study, but rates varied widely. In general, photoreduction rates increased with increasing iron concentrations, but the type of DOM appeared to influence the kinetics to a larger degree. The rate of reduction was significantly greater for DOM derived from terrestrial systems than from predominantly autochthonous materials even if additional iron was added to the later. A positive correlation was observed between rates of Cr(VI) photoreduction and properties of the isolated DOM samples whereby faster reduction was observed for larger more aromatic substrates. On the basis of the fast rates reported for the dark reduction of Cr(VI) to Cr(III) by Fe(II)-organic ligands, we hypothesize that the rate-limiting step in these reactions is the photoreduction of Fe(III) to Fe(II) by a ligand-to-metal charge-transfer pathway after absorption of light by Fe(III)-DOM complexes or by reduction of Fe(III) by superoxide or other intermediates formed after light absorption by DOM. Thus, the rate of Cr(VI) photoreduction to Cr(III) in natural sunlit waters is dependent upon both the amount of iron present and the nature of the dissolved organic matter substrate.


Carcinogens, Environmental/chemistry , Chromium/chemistry , Iron/chemistry , Biodegradation, Environmental , Eutrophication , Kinetics , Ligands , Organic Chemicals , Oxidation-Reduction , Photochemistry , Rivers , Water/chemistry
13.
Environ Sci Technol ; 37(13): 2929-35, 2003 Jul 01.
Article En | MEDLINE | ID: mdl-12875396

In this study we used multidimensional solution-state NMR to elucidate the differences in the chemical composition of solid phase extracted and ultrafiltered DOM isolates. DOM was isolated from water sampled from an oligotrophic river, the River Tagliamento (Italy). The recovery of total DOM was up to 42% with both isolation techniques. In addition to 1- and 2-D solution-state NMR, we also applied 1-D solid-state 13C NMR spectroscopy for DOM characterization. 13C NMR spectroscopy only produced broad overlapping resonances, thus allowing a bulk characterization of DOM composition. However, it demonstrated that the bulk chemical composition of the two DOM fractions exhibited minor spatial-temporal changes. The 2-D experiments (TOCSY, HMQC) showed that the solid phase extracted hydrophobic DOM contained predominantly aliphatic esters, ethers, and hydroxyl groups, whereas the ultrafiltered DOM was comprised partially of peptides/protein, with further evidence for a small amount of aliphatic/fatty acid material. Sugars were present in both DOM fractions. The results show the two isolation techniques selected for different suites of compounds within the bulk DOM pool.


Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Filtration , Magnetic Resonance Spectroscopy , Organic Chemicals/analysis , Solubility
...